Scientists at the University of Washington (UW) and other institutions have identified 25 genes regulating lifespan in two organisms separated by about 1.5 billion years in evolutionary change, according to the online journal Genome Research on Thursday.
At least 15 of those genes have very similar versions in humans, suggesting that scientists may be able to target those genes to help slow down the aging process and treat age-related conditions.
The two organisms used in this study, the single-celled budding yeast and the roundworm C. elegans, are commonly used models for aging research.
Finding genes that are conserved between the two organisms is significant, researchers say, because the two species are so far apart on the evolutionary scale -- even farther apart than the tiny worms and humans. That, combined with the presence of similar human genes, is an indication that these genes could regulate human longevity as well.
"Now that we know what many of these genes actually are, we have potential targets to go after in humans," said Brian Kennedy, UW associate professor of biochemistry. "We hope that in the future we could affect those targets and improve not just lifespan, but also the 'health span' or the period of a person's life when they can be healthy and not suffer from age-related illnesses."
(Xinhua News Agency March 14, 2008)